5.4. Experimental data.

(a) NMR Spectra.

Figure 5.1. NMR spectra of (A). 2,4,6-Tribromophenol, 2; (B). 2,4,4,6-Tetrabromo-2,5-cyclohexadienone, 3; (C). 4,6-Dibromo-2-chlorophenol, 5.
Figure 5.2. NMR spectra of (A) 4,6-Dibromo-2-methylphenol, 8; (B) 4-Bromo-2,6-dimethyl phenol, 10; (C) 2,6-Dibromo-4-nitro phenol, 14.
Figure 5.3. NMR spectra of (A) 1-Bromo-2-naphthol, 15; (B) 1,6-Bromo-2-naphthol, 16; (C) Tetrabromobisphenol-A 17.
Figure 5.4. NMR spectra of (A). 2,4,6-Tribromo aniline, 18; (B). 2,6-Dibromo-4-methyl aniline, 19; (C). 4-Bromo-N,N-dimethyl aniline 20.
Figure 5.5. NMR spectra of (A). 4,6-Dibromo-2-nitro aniline, 21; (B). 4-Bromo anisole, 23; (C). N-Bromosuccinimide, 26.
Figure 5.6. NMR spectra of (A). 4-Nitro benzylbromide, 27; (B). 1-Bromo naphthalene, 28; (C). Benzylbromide 29.
Figure 5.7. NMR spectra of (A) 1,2-Dibromo cyclohexane, 31; (B) 1,2-Dibromo cyclooctane, 32; (C) Styrene dibromide, 33.
Figure 5.8. NMR spectra of (A) 1,2-Dibromo-1- (4-methyl phenyl) ethane, 34; (B) 1,2-Dibromo hexane, 35; (C) 1,2-Dibromo octane, 36.
Figure 5.9. NMR spectra of (A) α, β-Dibromostyrene, 37; (B) Chalconedibromide, 38; (C) 1,2-Dibromo propanol, 39.
Figure 5.10. NMR spectra of (A). 2-Bromocyclohexanol, 40; (B). 1-Bromo-2-phenyl ethanol, 41; (C). 1-Bromo-2- (4-methyl phenyl) ethanol, 42.
In Situ Generation, Characterization and Applications of Hypobromous Acid: Eco-Friendly Preparation of Some Important Organo Bromine Compounds

Figure 5.11. NMR spectra of (A). \(\beta\)-Bromo-\(\alpha\)-hydroxy styrene, 43; (B). 1-Bromo-2-hexanol, 44; (C). 2-Bromohexanol, 44a.
Figure 5.12. NMR spectra of (A). 1-Bromo-2-octanol, 45; (B). 2-Bromooctanol (45a)
In Situ Generation, Characterization and Applications of Hypobromous Acid: Eco-Friendly Preparation of Some Important Organo Bromine Compounds

Figure 5.13. NMR spectra of (A). 2-Naphthol, 47=48; (B). 2,6-Diiodophenol, 50; (C). 6-Bromo-2-naphthol, 51.